Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Human glutaredoxin-1 can transfer copper to isolated metal binding domains of the P1B-type ATPase, ATP7B.

Identifieur interne : 000060 ( Main/Exploration ); précédent : 000059; suivant : 000061

Human glutaredoxin-1 can transfer copper to isolated metal binding domains of the P1B-type ATPase, ATP7B.

Auteurs : Shadi Maghool [Australie] ; Sharon La Fontaine [Australie] ; Blaine R. Roberts [Australie, États-Unis] ; Ann H. Kwan [Australie] ; Megan J. Maher [Australie]

Source :

RBID : pubmed:32139726

Descripteurs français

English descriptors

Abstract

Intracellular copper (Cu) in eukaryotic organisms is regulated by homeostatic systems, which rely on the activities of soluble metallochaperones that participate in Cu exchange through highly tuned protein-protein interactions. Recently, the human enzyme glutaredoxin-1 (hGrx1) has been shown to possess Cu metallochaperone activity. The aim of this study was to ascertain whether hGrx1 can act in Cu delivery to the metal binding domains (MBDs) of the P1B-type ATPase ATP7B and to determine the thermodynamic factors that underpin this activity. hGrx1 can transfer Cu to the metallochaperone Atox1 and to the MBDs 5-6 of ATP7B (WLN5-6). This exchange is irreversible. In a mixture of the three proteins, Cu is delivered to the WLN5-6 preferentially, despite the presence of Atox1. This preferential Cu exchange appears to be driven by both the thermodynamics of the interactions between the proteins pairs and of the proteins with Cu(I). Crucially, protein-protein interactions between hGrx1, Atox1 and WLN5-6 were detected by NMR spectroscopy both in the presence and absence of Cu at a common interface. This study augments the possible activities of hGrx1 in intracellular Cu homeostasis and suggests a potential redundancy in this system, where hGrx1 has the potential to act under cellular conditions where the activity of Atox1 in Cu regulation is attenuated.

DOI: 10.1038/s41598-020-60953-z
PubMed: 32139726
PubMed Central: PMC7057996


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Human glutaredoxin-1 can transfer copper to isolated metal binding domains of the P
<sub>1B</sub>
-type ATPase, ATP7B.</title>
<author>
<name sortKey="Maghool, Shadi" sort="Maghool, Shadi" uniqKey="Maghool S" first="Shadi" last="Maghool">Shadi Maghool</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fontaine, Sharon La" sort="Fontaine, Sharon La" uniqKey="Fontaine S" first="Sharon La" last="Fontaine">Sharon La Fontaine</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Life and Environmental Sciences, Deakin University, Geelong, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>The Florey Institute of Neuroscience, The University of Melbourne, Parkville, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>The Florey Institute of Neuroscience, The University of Melbourne, Parkville, VIC</wicri:regionArea>
<orgName type="university">Université de Melbourne</orgName>
<placeName>
<settlement type="city">Melbourne</settlement>
<region type="état">Victoria (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Roberts, Blaine R" sort="Roberts, Blaine R" uniqKey="Roberts B" first="Blaine R" last="Roberts">Blaine R. Roberts</name>
<affiliation wicri:level="4">
<nlm:affiliation>The Florey Institute of Neuroscience, The University of Melbourne, Parkville, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>The Florey Institute of Neuroscience, The University of Melbourne, Parkville, VIC</wicri:regionArea>
<orgName type="university">Université de Melbourne</orgName>
<placeName>
<settlement type="city">Melbourne</settlement>
<region type="état">Victoria (État)</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322</wicri:regionArea>
<wicri:noRegion>30322</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kwan, Ann H" sort="Kwan, Ann H" uniqKey="Kwan A" first="Ann H" last="Kwan">Ann H. Kwan</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life and Environmental Sciences and University of Sydney Nano Institute, Sydney, NSW, Australia. ann.kwan@sydney.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Life and Environmental Sciences and University of Sydney Nano Institute, Sydney, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Maher, Megan J" sort="Maher, Megan J" uniqKey="Maher M" first="Megan J" last="Maher">Megan J. Maher</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia. megan.maher@unimelb.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>School of Chemistry and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia. megan.maher@unimelb.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Chemistry and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville</wicri:regionArea>
<orgName type="university">Université de Melbourne</orgName>
<placeName>
<settlement type="city">Melbourne</settlement>
<region type="état">Victoria (État)</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32139726</idno>
<idno type="pmid">32139726</idno>
<idno type="doi">10.1038/s41598-020-60953-z</idno>
<idno type="pmc">PMC7057996</idno>
<idno type="wicri:Area/Main/Corpus">000075</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000075</idno>
<idno type="wicri:Area/Main/Curation">000075</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000075</idno>
<idno type="wicri:Area/Main/Exploration">000075</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Human glutaredoxin-1 can transfer copper to isolated metal binding domains of the P
<sub>1B</sub>
-type ATPase, ATP7B.</title>
<author>
<name sortKey="Maghool, Shadi" sort="Maghool, Shadi" uniqKey="Maghool S" first="Shadi" last="Maghool">Shadi Maghool</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fontaine, Sharon La" sort="Fontaine, Sharon La" uniqKey="Fontaine S" first="Sharon La" last="Fontaine">Sharon La Fontaine</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Life and Environmental Sciences, Deakin University, Geelong, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>The Florey Institute of Neuroscience, The University of Melbourne, Parkville, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>The Florey Institute of Neuroscience, The University of Melbourne, Parkville, VIC</wicri:regionArea>
<orgName type="university">Université de Melbourne</orgName>
<placeName>
<settlement type="city">Melbourne</settlement>
<region type="état">Victoria (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Roberts, Blaine R" sort="Roberts, Blaine R" uniqKey="Roberts B" first="Blaine R" last="Roberts">Blaine R. Roberts</name>
<affiliation wicri:level="4">
<nlm:affiliation>The Florey Institute of Neuroscience, The University of Melbourne, Parkville, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>The Florey Institute of Neuroscience, The University of Melbourne, Parkville, VIC</wicri:regionArea>
<orgName type="university">Université de Melbourne</orgName>
<placeName>
<settlement type="city">Melbourne</settlement>
<region type="état">Victoria (État)</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322</wicri:regionArea>
<wicri:noRegion>30322</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kwan, Ann H" sort="Kwan, Ann H" uniqKey="Kwan A" first="Ann H" last="Kwan">Ann H. Kwan</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life and Environmental Sciences and University of Sydney Nano Institute, Sydney, NSW, Australia. ann.kwan@sydney.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Life and Environmental Sciences and University of Sydney Nano Institute, Sydney, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Maher, Megan J" sort="Maher, Megan J" uniqKey="Maher M" first="Megan J" last="Maher">Megan J. Maher</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia. megan.maher@unimelb.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>School of Chemistry and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia. megan.maher@unimelb.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Chemistry and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville</wicri:regionArea>
<orgName type="university">Université de Melbourne</orgName>
<placeName>
<settlement type="city">Melbourne</settlement>
<region type="état">Victoria (État)</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Copper (metabolism)</term>
<term>Copper Transport Proteins (genetics)</term>
<term>Copper Transport Proteins (metabolism)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Magnetic Resonance Spectroscopy (MeSH)</term>
<term>Molecular Chaperones (genetics)</term>
<term>Molecular Chaperones (metabolism)</term>
<term>Protein Binding (MeSH)</term>
<term>Protein Structure, Quaternary (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Chaperons moléculaires (génétique)</term>
<term>Chaperons moléculaires (métabolisme)</term>
<term>Cuivre (métabolisme)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Spectroscopie par résonance magnétique (MeSH)</term>
<term>Structure quaternaire des protéines (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Copper Transport Proteins</term>
<term>Glutaredoxins</term>
<term>Molecular Chaperones</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Copper</term>
<term>Copper Transport Proteins</term>
<term>Glutaredoxins</term>
<term>Molecular Chaperones</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Chaperons moléculaires</term>
<term>Glutarédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Chaperons moléculaires</term>
<term>Cuivre</term>
<term>Glutarédoxines</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Humans</term>
<term>Magnetic Resonance Spectroscopy</term>
<term>Protein Binding</term>
<term>Protein Structure, Quaternary</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Humains</term>
<term>Liaison aux protéines</term>
<term>Spectroscopie par résonance magnétique</term>
<term>Structure quaternaire des protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Intracellular copper (Cu) in eukaryotic organisms is regulated by homeostatic systems, which rely on the activities of soluble metallochaperones that participate in Cu exchange through highly tuned protein-protein interactions. Recently, the human enzyme glutaredoxin-1 (hGrx1) has been shown to possess Cu metallochaperone activity. The aim of this study was to ascertain whether hGrx1 can act in Cu delivery to the metal binding domains (MBDs) of the P
<sub>1B</sub>
-type ATPase ATP7B and to determine the thermodynamic factors that underpin this activity. hGrx1 can transfer Cu to the metallochaperone Atox1 and to the MBDs 5-6 of ATP7B (WLN5-6). This exchange is irreversible. In a mixture of the three proteins, Cu is delivered to the WLN5-6 preferentially, despite the presence of Atox1. This preferential Cu exchange appears to be driven by both the thermodynamics of the interactions between the proteins pairs and of the proteins with Cu(I). Crucially, protein-protein interactions between hGrx1, Atox1 and WLN5-6 were detected by NMR spectroscopy both in the presence and absence of Cu at a common interface. This study augments the possible activities of hGrx1 in intracellular Cu homeostasis and suggests a potential redundancy in this system, where hGrx1 has the potential to act under cellular conditions where the activity of Atox1 in Cu regulation is attenuated.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32139726</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>11</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>11</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2045-2322</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>03</Month>
<Day>05</Day>
</PubDate>
</JournalIssue>
<Title>Scientific reports</Title>
<ISOAbbreviation>Sci Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>Human glutaredoxin-1 can transfer copper to isolated metal binding domains of the P
<sub>1B</sub>
-type ATPase, ATP7B.</ArticleTitle>
<Pagination>
<MedlinePgn>4157</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/s41598-020-60953-z</ELocationID>
<Abstract>
<AbstractText>Intracellular copper (Cu) in eukaryotic organisms is regulated by homeostatic systems, which rely on the activities of soluble metallochaperones that participate in Cu exchange through highly tuned protein-protein interactions. Recently, the human enzyme glutaredoxin-1 (hGrx1) has been shown to possess Cu metallochaperone activity. The aim of this study was to ascertain whether hGrx1 can act in Cu delivery to the metal binding domains (MBDs) of the P
<sub>1B</sub>
-type ATPase ATP7B and to determine the thermodynamic factors that underpin this activity. hGrx1 can transfer Cu to the metallochaperone Atox1 and to the MBDs 5-6 of ATP7B (WLN5-6). This exchange is irreversible. In a mixture of the three proteins, Cu is delivered to the WLN5-6 preferentially, despite the presence of Atox1. This preferential Cu exchange appears to be driven by both the thermodynamics of the interactions between the proteins pairs and of the proteins with Cu(I). Crucially, protein-protein interactions between hGrx1, Atox1 and WLN5-6 were detected by NMR spectroscopy both in the presence and absence of Cu at a common interface. This study augments the possible activities of hGrx1 in intracellular Cu homeostasis and suggests a potential redundancy in this system, where hGrx1 has the potential to act under cellular conditions where the activity of Atox1 in Cu regulation is attenuated.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Maghool</LastName>
<ForeName>Shadi</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fontaine</LastName>
<ForeName>Sharon La</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>The Florey Institute of Neuroscience, The University of Melbourne, Parkville, VIC, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Roberts</LastName>
<ForeName>Blaine R</ForeName>
<Initials>BR</Initials>
<AffiliationInfo>
<Affiliation>The Florey Institute of Neuroscience, The University of Melbourne, Parkville, VIC, Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kwan</LastName>
<ForeName>Ann H</ForeName>
<Initials>AH</Initials>
<AffiliationInfo>
<Affiliation>School of Life and Environmental Sciences and University of Sydney Nano Institute, Sydney, NSW, Australia. ann.kwan@sydney.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Maher</LastName>
<ForeName>Megan J</ForeName>
<Initials>MJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia. megan.maher@unimelb.edu.au.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>School of Chemistry and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia. megan.maher@unimelb.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>03</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Sci Rep</MedlineTA>
<NlmUniqueID>101563288</NlmUniqueID>
<ISSNLinking>2045-2322</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C474500">ATOX1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000079922">Copper Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C516005">GLRX protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018832">Molecular Chaperones</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>789U1901C5</RegistryNumber>
<NameOfSubstance UI="D003300">Copper</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003300" MajorTopicYN="N">Copper</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000079922" MajorTopicYN="N">Copper Transport Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009682" MajorTopicYN="N">Magnetic Resonance Spectroscopy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018832" MajorTopicYN="N">Molecular Chaperones</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020836" MajorTopicYN="N">Protein Structure, Quaternary</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>10</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>01</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>3</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>3</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>11</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32139726</ArticleId>
<ArticleId IdType="doi">10.1038/s41598-020-60953-z</ArticleId>
<ArticleId IdType="pii">10.1038/s41598-020-60953-z</ArticleId>
<ArticleId IdType="pmc">PMC7057996</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2011 Apr 1;286(13):11047-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21258123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Jun 30;48(25):5849-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19449859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr F Struct Biol Commun. 2019 May 1;75(Pt 5):392-396</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31045569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1997 Feb 27;1360(1):3-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9061035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol. 1999 Mar;276(3):G639-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10070040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Feb 26;285(9):6327-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20032459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IUBMB Life. 2017 Apr;69(4):226-235</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28271598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Nov 21;289(47):32682-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25253690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2000 Feb 22;39(7):1890-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10677240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2014 Aug;19(6):1037-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24824562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Aug 9;271(32):19099-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8702583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Feb 16;7:10640</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26879543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2006 Jun;1760(6):907-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16632204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2010 Oct 5;49(39):8468-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20799727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biometals. 2014 Aug;27(4):661-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24816595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Aug 3;287(32):26678-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22648419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2006 Sep 22;348(2):428-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16884690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Jun 3;465(7298):645-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20463663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Alzheimers Dis. 2015;44(2):343-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25261447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Mar 23;282(12):8622-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17229731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Sep 18;284(38):25461-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19602511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2011 Jan;1810(1):93-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20620191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 2000 Sep;7(9):766-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10966647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Mar 26;279(13):12269-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14709553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2006 Jul;2(7):367-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16732294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2019 Mar;15(3):241-249</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30692683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 1998 Jan;46(1):84-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9419228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Life Sci Alliance. 2019 Sep 12;2(5):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31515291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molecules. 2015 Mar 18;20(3):4928-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25793542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 May;1830(5):3217-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23036594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bioenerg Biomembr. 2007 Dec;39(5-6):403-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18000748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2006 Nov;31(11):604-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16982196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2015 Dec 19;4:e09066</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26687009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nutr. 2004 May;134(5):1003-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15113935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bioenerg Biomembr. 2002 Oct;34(5):339-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12539961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Apr 9;279(15):15376-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14754885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acc Chem Res. 2001 Feb;34(2):119-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11263870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 1999 Jun 15;7(6):605-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10404590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1984 Apr 1;219(1):1-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6326753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Apr;1783(4):641-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18331844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Aug 27;285(35):27111-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20566629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Apr 30;284(5415):805-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10221913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3627-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16501047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2004 Oct 19;43(41):13046-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15476398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2009 Jul 29;422(1):37-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19453293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2014 Jan;1840(1):255-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24041990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 Nov 15;15(22):6084-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8947031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Jul 25;272(30):18939-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9228074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Oct 1;274(40):28497-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10497213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Apr 3;284(14):9354-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19181666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Oct 31;278(5339):853-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9346482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2019 Jan 18;431(2):158-177</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30552876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 Sep 20;19(9):945-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23249252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2007 Jul 15;463(2):149-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17531189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2012 Aug 15;446(1):59-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22651090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2015 Oct 1;24(19):5404-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26160915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Vis Exp. 2016 Apr 13;(110):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27167680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2017 Nov 3;292(44):18169-18177</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28900031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 2001 May;20(1):71-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11430757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Inorg Biochem. 2009 Mar;103(3):333-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19124158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5729-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16571664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Trace Elem Med Biol. 2015;31:193-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24954801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1998 Jul 24;280(4):687-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9677297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metallomics. 2014 Apr;6(4):793-808</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24522867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1998 Dec 8;37(49):17145-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9860827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Apr 19;277(16):13409-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11823463</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>États-Unis</li>
</country>
<region>
<li>Victoria (État)</li>
</region>
<settlement>
<li>Melbourne</li>
</settlement>
<orgName>
<li>Université de Melbourne</li>
</orgName>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Maghool, Shadi" sort="Maghool, Shadi" uniqKey="Maghool S" first="Shadi" last="Maghool">Shadi Maghool</name>
</noRegion>
<name sortKey="Fontaine, Sharon La" sort="Fontaine, Sharon La" uniqKey="Fontaine S" first="Sharon La" last="Fontaine">Sharon La Fontaine</name>
<name sortKey="Fontaine, Sharon La" sort="Fontaine, Sharon La" uniqKey="Fontaine S" first="Sharon La" last="Fontaine">Sharon La Fontaine</name>
<name sortKey="Kwan, Ann H" sort="Kwan, Ann H" uniqKey="Kwan A" first="Ann H" last="Kwan">Ann H. Kwan</name>
<name sortKey="Maher, Megan J" sort="Maher, Megan J" uniqKey="Maher M" first="Megan J" last="Maher">Megan J. Maher</name>
<name sortKey="Maher, Megan J" sort="Maher, Megan J" uniqKey="Maher M" first="Megan J" last="Maher">Megan J. Maher</name>
<name sortKey="Roberts, Blaine R" sort="Roberts, Blaine R" uniqKey="Roberts B" first="Blaine R" last="Roberts">Blaine R. Roberts</name>
</country>
<country name="États-Unis">
<noRegion>
<name sortKey="Roberts, Blaine R" sort="Roberts, Blaine R" uniqKey="Roberts B" first="Blaine R" last="Roberts">Blaine R. Roberts</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000060 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000060 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32139726
   |texte=   Human glutaredoxin-1 can transfer copper to isolated metal binding domains of the P1B-type ATPase, ATP7B.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32139726" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020